
A New Method for the Synthesis of Antihypercholesterolemic Agent Simvastatin

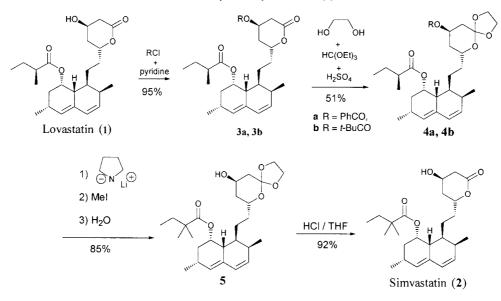
by Kadir Dabak* and Mustafa Adiyaman

Department of Research and Development, Eczacibasi Özgün Kimya, Organize Sanayi Bolgesi, Fatih Cad. 12, Cerkezkoy 59500, TR-Tekirdag (phone: 90-282-7581771; fax: 90-282-7581770; e-mail: kadird@eczacibasi.com.tr)

A new synthetic method for the preparation of the cholesterol-lowering drug simvastatin from the naturally occurring lovastatin is reported. The synthesis employs first the protection of the OH group of lovastatin (1) and then the protection of the lactone C=O group to prevent enolization via conversion to the orthoesters 4a and 4b. Alkylation of the 2-methylbutyrate side chain is then successfully achieved. Removal of the protecting groups affords antihypercholesterolemic agent simvastatin (2)

Introduction. - Simvastatin (2), like other statins (lovastatin (1), pravastatin, mevastatin, atorvastatin, fluvastatin, cervastatin, etc., derivatives and analogs thereof) is a (hydroxymethyl)glutaryl coenzyme A reductase (HMG-CoA reductase) inhibitor and is used as an antihypercholesterolemic agent [1-5].

Simvastatin (2) is prepared from a fermentation product, lovastatin (1). It has been reported [6] that $\mathbf{1}$ cannot be converted directly to simvastatin (2) by an alkylation reaction. Because of higher acidity of the lactone α -H atoms compared with the α -H atoms of the ester side chain, alkylation occurs preferentially in the α -position of the lactone. In general, there are two known routes to introduce the additional α -Me group to the 8-acyl side chain of 1. One involves a deacylation/reacylation procedure, comprised of de-esterification of 2-methylbutanoyloxy side chain of 1 and reesterification with 2,2-dialkylbutyric acid [7][8]. The other one involves protection reactions and an alkylation of the methylbutanoyloxy side chain with methylhalide/ metal alkylamide, and deprotection reactions. In many of the synthetic procedures described in the literature, the latter methodology is used to prepare 2 from 1[9-15].


All synthetic approaches to prepare simvastatin (2) suffer from severe disadvantages, such as an excessive number steps, including those involving the ring opening of the lactone group of **1**, the insertion and removal of protecting groups and necessity for lactonization, and/or use of expensive reagents.

We report here a less-expensive, safe, and reliable method to synthesize simvastatin (2) from lovastatin (1). Both the protection and the removal of the protecting groups and methylation reactions are easy to handle, and 2 is obtained in only four steps with inexpensive reagents.

Results and Discussion. – In this study, we decided to methylate the (S)-2-methylbutanoyloxy side chain of **1** in order to avoid the problematic deacylation/reacylation reactions. To achieve our goal, we needed to protect the lactone C=O group to prevent an alkylation at the α -position of the lactone ring. Although the protection of the C=O group of a lactone [16][17] as an orthoformate derivative with ethyleneglycol has been reported, no such method has been used in the preparation of **2**.

Our synthesis started with the conversion of **1** to its benzoate derivative **3a** with PhCOCl and pyridine in CH₂Cl₂ in 95% yield. Then, **3a** treated with ethane-1,2-diol, $(EtO)_3CH$, and a catalytic amount of H₂SO₄ in THF gave the desired orthoformate **4a** in 51% yield (*Scheme*). The methylation of the (*S*)-2-methylbutanoyloxy side chain of **4a** was conducted with BuLi, pyrrolidine, and MeI in THF, followed by aqueous workup to give simvastatin β -hydroxyorthoformate derivative **5** in 85% yield. It has to be emphasised that simultaneous removal of the OH protecting group in **4a** occurred during the aqueous workup due to generation of the basic medium in each case. Finally, we have successfully obtained the cholesterol-lowering agent simvastatin (**2**) in 92% yield by removing the C=O protecting group of compound **5** by treatment with dilute HCl in THF.

Scheme. Synthesis of Simvastatin (2)

674

We have also obtained simvastatin (2) via protection of the OH group of 1 with pivaloyl chloride in a manner similar to the benzoate protection (*Scheme*).

The main feature of the new synthesis is in the use of the above-described C=O group protection of the lactone as the orthoester derivatives 4a and 4b. This synthesis of 2 involves four simple synthetic steps and overcomes also the formation of a dimer of 2, as the lactone ring is not opened in contrast to the methods involving lactone opening and closing.

Experimental Part

General. All reactions were carried out under an inert atmosphere of N₂ and with glassware dried in oven (150°) unless otherwise noted. The following solvents and reagents were dried over molecular sieves prior to use: THF, pyrrolidine, DMF, toluene. TLC: *EM Science* (*E. Merck*) plates precoated with silica gel 60 F₂₅₄ (0.25-mm thickness). Spots were visualized by any of the following methods: UV, I₂, phosphomolybdic acid (PMA), anisaldehyde, or KMnO₄. Flash column chromatography (FC): with the solvents specified. M.p.: *Electrothermal Thomas-Hoover* cap. melting-point apparatus; uncorrected. IR (KBr for the solids and film for the oil; cm⁻¹): *Jasco FT-IR*, model 5300. ¹H-NMR (δ [ppm], CDCl₃): 300-MHz Varian instrument; TMS as internal standard; the coupling constants *J* are given in Hz. ¹³C-NMR: at 75 MHz. MS: *VG-Zabspec* double-focusing spectrometer; EI-MS at 70 eV.

(2R,4R)-2-[2-((1S,2S,6R,8S,8aR)-1,2,6,7,8,8a-Hexahydro-2,6-dimethyl-8-[[(S)-2-methylbutanoyl]oxy]naphthalen-1-yl)ethyl]-3,4,5,6-tetrahydro-6-oxo-2H-pyran-4-yl Benzoate (**3a**). To a soln. of lovastatin (**1**; 20 g, 49.63 mmol) in toluene (250 ml) were added pyridine (8.64 g, 109.17 mmol) and then slowly PhCOCI (13.95 g, 99.26 mmol) at r.t. The mixture was stirred at r.t. for 18 h and then diluted with toluene (25 ml). The resulting soln. was washed with 1h HCl soln. (2×25 ml), 10% NaHCO₃ (30 ml), and H₂O (30 ml). The org. phase was separated and dried (Na₂SO₄). Na₂SO₄ was filtered off, and the filtrate was concentrated *in vacuo*. The product precipitated upon addition of hexane (150 ml), and the filtration afforded **3a** (20.3 g, 91%). White crystalline product. M.p. 114–117°. IR: 2962, 2931, 2877, 1724, 1449, 1265, 1109, 704. ¹H-NMR: 0.82 (t, J = 7.2, Me); 1.04 (d, J = 6.7, Me); 1.07 (d, J = 6.6, Me); 1.24–1.76 (m, 4 CH₂, CH, Me); 1.81–2.02 (m, 3 CH, CH₂); 2.23–2.44 (m, CH); 2.88 (d, J = 4.7, CH₂); 4.59 (m, CH); 5.37 (m, CH); 5.53 (m, 2 CH); 5.78 (d, J = 9.4, CH); 5.98 (d, J = 9.4, CH); 7.46 (t, J = 7.6, 2 CH); 7.65 (t, J = 7.1, CH); 8.03 (d, J = 3.5, 2 CH). ¹³C-NMR: 11.8; 14.2; 16.5; 23.0; 24.5; 27.0; 27.7; 30.9; 33.5; 33.6; 35.7; 36.9; 37.4; 41.6; 42.7; 66.3; 68.1; 76.8; 128.6; 128.8; 129.5; 129.89; 129.97; 131.8; 133.2; 133.8; 166; 168.2; 176.8. EI-MS: 508.6 (M^{++}).

(2R,4R)-2,2-(Ethylenedioxy)-6-[2-((1S,2S,6R,8S,8aR)-1,2,6,7,8,8a-hexahydro-2,6-dimethyl-8-{[(S)-2-methylbutanoyl]oxy]naphthalen-1-yl)ethyl]-3,4,5,6-tetrahydro-2H-pyran-4-yl Benzoate (**4a**). To a soln. of **3a** (11.4 g, 20 mmol) in dry THF (150 ml) was added ethane-1,2-diol (10.2 g, 200 mmol), (EtO)₃CH (8.9 g, 60 mmol), and 3 drops of H₂SO₄. The mixture was stirred for 48 h at r.t. Then, 150 ml of sat. NaHCO₃ soln. was added, and THF was removed under reduced pressure. The aq. phase was extracted with AcOEt (2 × 150 ml). The org. phase was separated and dried (Na₂SO₄). Na₂SO₄ was filtered off, and the filtrate was concentrated under reduced pressure. The residue was purified by FC with hexane/AcOEt 3 :1 to give **4a** (6.05 g, 51% yield). White solid. M.p. 113–115°. IR: 2939, 2924, 1719, 1705, 1460, 1274, 1186, 1111, 703. ¹H-NMR: 0.75 (t, J = 7.62, Me); 0.86 (d, J = 7, Me); 1.03 (d, J = 4.1, Me); 1.06 (d, J = 3.52, CH₂); 2.23–2.42 (m, CH₂, CH); 1.48–1.74 (m, CH₂, CH); 1.76–2.10 (m, CH₂, CH); 5.47 (m, 2 CH₂); 5.26 (d, J = 9.4, CH); 5.94 (d, J = 9.4, CH); 7.46 (t, J = 7.63, 2CH); 7.53 (t, J = 7.03, CH); 8.14 (d, J = 7.03, CH). ¹³C-NMR: 11.7; 14.1; 16.4; 22.9; 24.9; 27.06; 27.7; 30.9; 32.6; 32.9; 34.8; 35.1; 37.3; 37.4; 41.5; 64.2; 64.2; 68.2; 70.4; 118.6; 128.4; 128.5; 129.6; 129.9; 130.8; 132.1; 133.7; 166.1; 176.9. EI-MS: 552.7 (M^{++}).

 $(1\$, 3\aleph, 7\$, 8\$, 8aR)$ -8- $[2-[(2\aleph, 4\aleph)-6, 6-(Ethylenedioxy)-3, 4, 5, 6-tetrahydro-4-hydroxy-2H-pyran-2-yl]ethyl]-$ 1,2,3,7,8,8a-hexahydro-3,7-dimethyl-naphthalen-1-yl 2,2-Dimethylbutanoate (**5**) from**4a**. To a stirred soln. of $pyrrolidine (3.56 g, 50 mmol) in anh. THF (100 ml) was added BuLi (3.2 g, 50 mmol; 2.5M in hexane) at <math>-20^{\circ}$. The resulting mixture was stirred at -20° for 30 min and then transferred *via* cannula under N₂ pressure to a stirred soln. of **4a** (5.53 g, 10 mmol) in THF (100 ml) cooled to -30° to -35° at such a rate that the temp. was kept below -30° . After completion of the addition, the mixture was stirred at -30° for 2 h, and then MeI (7.1 g, 50 mmol) was added while keeping the temp. at -30° . The mixture was stirred for additional 1.5 h, allowed to warm to -10° , and kept at this temp. for 1 h. The reaction was quenched by careful addition of H₂O (200 ml). The resulting slurry was stirred for 20 min. at 0°, THF was removed under reduced pressure, and the aq. phase was extracted with AcOEt (2 × 150 ml). The combined org. extracts were washed with H₂O (2 × 150 ml) and dried (Na₂SO₄). Na₂SO₄ was filtered off and the filtrate was concentrated under reduced pressure to give **5** (2.27 g, 85%) as an oily product, which was used directly in the next step. IR: 2963, 1720, 1461, 1372, 1250, 948, 861, 777. ¹H-NMR: 0.78 (t, J = 7.6, Me); 1.03 (d, J = 7, Me); 1.05 (s, 2 Me); 1.22 – 1.43 (m, CH₂, CH); 1.44 – 1.75 (m, 6 H); 1.82 – 2.03 (m, 4 H); 2.04 (dd, J = 9.6, CH); 2.21 (d, J = 3.5, CH₂); 2.23 – 2.41 (m, 2 CH₂); 3.82 – 4.01 (m, 2 CH); 4.02 – 4.22 (m, 2 CH₂); 5.77 (m, CH); 5.98 (d, J = 9.2, CH). ¹³C-NMR: 9.5; 14.3; 23.3; 24.9; 27.5; 30.6; 32.9; 33.2; 37.3; 37.5; 42.4; 37.9; 64.1; 65.4; 68.3; 70.1; 118.9; 128.5; 129.8; 131.9; 133.4; 177.9. EI-MS: 462.6 (M^{++}).

(2R,4R)-2- $[2-((1S,2S,6R,8S,8aR)-1,2,6,7,8,8a-Hexahydro-2,6-dimethyl-8-<math>\{[(S)-2-methylbutanoyl]oxy\}$ naphthalen-1-yl)ethyl]-3,4,5,6-tetrahydro-6-oxo-2H-pyran-4- yl 2,2-Dimethylpropanoate (**3b**). The reaction was conducted in a manner similar to the preparation of **3a**, with **1** (10 g, 24.8 mmol) as the starting material. The corresponding ester **3b** was obtained as an off-white solid (11.2 g, 92%). M.p. 95–96°. IR: 2968, 2870, 1728, 1708, 1461, 1245, 1154, 1075, 872. ¹H-NMR: 0.84 (t, J = 7.6, Me); 0.95 (d, J = 7.9, Me); 1.03 (d, J = 7.8, Me); 1.11 (d, J = 7.0, Me); 1.24 (s, 3 Me); 1.31–1.50 (m, CH₂); 1.51–2.03 (m, 4 CH₂); 2.22–2.43 (m, 4 CH); 2.75 (m, CH₂); 2.86 (d, J = 18.2, CH); 4.45 (m, CH); 5.23 (m, CH); 5.35 (m, CH); 5.54 (m, CH); 5.77 (m, CH); 5.95 (d, J = 9.4, CH). ¹³C-NMR: 11.8; 14.1; 16.5; 23.0; 24.5; 27.0; 27.2; 27.7; 30.9; 32.7; 33.4; 33.5; 35.5; 36.9; 37.4; 39.0; 41.6; 65.4; 68.0; 76.8; 128.6; 129.9; 131.8; 133.2; 169.0; 176.8; 177.7. EI-MS: 488.1 (M^{++}).

 $(2R,4R)-2,2-(Ethylenedioxy)-6-[2-((15,2S,6R,8S,8aR)-1,2,6,7,8,8a-hexahydro-2,6-dimethyl-8-{[(S)-2-methylbutanoyl]oxy]naphthalen-1-yl)ethyl]-3,4,5,6-tetrahydro-2H-pyran-4-yl 2,2-Dimethylpropanoate ($ **4b**). The reaction was conducted in a manner similar to the preparation of**4a**, with**3b**(9.77 g, 20 mmol) as the starting material. Yield: 5.11 g (48%). IR: 2958, 2873, 1723, 1461, 1286, 1161, 1039, 950, 733. ¹H-NMR: 0.84 (*t*,*J*= 7.6, Me); 0.86 (*d*,*J*= 7.9, Me); 1.02 (*d*,*J*= 7.8, Me); 1.11 (*d*,*J*= 7.0, Me); 1.23 (*s*, 3 Me); 1.24 – 1.76 (*m*, 3 CH₂); 1.91 – 2.04 (*m*, 2 CH₂); 2.06 – 2.51 (*m*, 3 CH); 3.85 – 4.22 (*m*, 2 CH₂, 2 CH); 4.31 (*m*, CH); 5.05 (*m*, CH); 5.24 (*m*, CH); 5.43 (*m*, CH); 5.85 (*m*, CH); 5.92 (*d*,*J*= 9.3, CH). ¹³C-NMR: 11.8; 14.1; 16.4; 23.0; 24.9; 27.1; 27.2; 27.7; 29.9; 30.8; 32.6; 32.9; 34.8; 37.3; 37.4; 39.0; 41.6; 64.0; 64.1; 67.4; 68.2; 70.3; 118.5; 128.4; 129.6; 132.1; 133.7; 176.9; 178.1. EI-MS: 532.2 (*M*⁺⁺).

Compound **5** *from* **4b**. The reaction was conducted in a manner similar to the preparation of **5** from **4a**. Compound **5** was obtained in 84% yield (2.76 g), which was used directly in the next step. Spectroscopic data were identical with those of compound **5** obtained from **4a**.

 $(IS_3R,7S_8S_8aR)$ -1,2,3,7,8,8a-Hexahydro-3,7-dimethyl-8-[2-[(2R,4R)-3,4,5,6-tetrahydro-4-hydroxy-6-oxo-2H-pyran-2-yl]ethyl/naphthalen-1-yl 2,2-Dimethylbutanoate (= Simvastatin; **2**). To a soln. of **5** (4.63 g, 10 mmol) in THF (50 ml) was added 1N HCl (10%, 10 ml) at r.t. The mixture was stirred at r.t. for 3 h. THF was removed under reduced pressure, and the aq. phase extracted with AcOEt (2 × 50 ml). The combined org. extracts were washed with sat. NaHCO₃ (2 × 25 ml) and dried (Na₂SO₄). Na₂SO₄ was filtered off, and the filtrate was concentrated under reduced pressure. The residue was crystallized from toluene/hexane to give **2** (3.85 g, 92%). White solid. M.p. 132–134°. IR: 2945, 2930, 1701, 1389, 1255, 1162, 1076,1056. ¹H-NMR: 0.83 (t, J = 7.3, Me); 1.04 (d, J = 7.1, Me); 1.10 (s, 2 Me); 1.20–1.73 (m, Me, 4 CH₂); 1.83–2.03 (m, CH₂, CH); 2.24–2.44 (m, CH₂, CH); 2.65–2.81 (m, 2 CH); 4.32 (m, CH); 4.63 (m, CH); 5.33 (m, CH); 5.43 (m, CH); 5.84 (m, CH); 5.98 (d, J = 9.4, CH). ¹³C-NMR: 9.6; 14.1; 23.3; 24.5; 24.9; 25.0; 27.5; 30.8; 33.1; 33.2; 36.3; 36.8; 37.6; 38.8; 43.2; 62.7; 68.3; 76.7; 128.6; 129.9; 131.7; 133.1; 170.8; 178.3. EI-MS: 418.2 (M^{++}).

REFERENCES

- [1] W. Behrens-Baumann, J. Thiery, E. Wieland, H. G. Fieseler, D. Seidel, Arzneim.-Forsch. 1992, 42, 1023.
- [2] T. Aoki, H. Nishimura, S. Nakagawa, J. Kojima, H. Suzuki, Arzneim.-Forsch. 1997, 47, 904.
- [3] F. Ishida, A. Sato, Y. Iizuka, T. Kamei, Chem. Pharm. Bull. 1989, 37, 1635.
- [4] G. E. Stokker, J. Org. Chem. 1994, 59, 5983.
- [5] G. D. Hartman, W. Halczenko, M. E. Duggan, J. S. Imagire, R. L. Smith, J. Med. Chem. 1992, 35, 3813.
- [6] D. Askin, T. R. Verhoeven, T. M.-H. Liu, I. Shinkai, J. Org. Chem. 1991, 56, 4929.
- [7] A. K. Willard, R. L. Smith, J. Labelled Compd. Radiopharm. 1982, 19, 337.
- [8] M. Sleteinger, T. R. Verhoeven, R. P. Volante, to Merck & Co., Inc., U.S. Pat. 4,582,915, 1986.
- [9] S. R. Prakash, R. L. Ellsworth, J. Labelled Compd. Radiopharm. 1988, 25, 815.
- [10] R. Kubela, J. Radhakrishnan, to Apotex, Inc., U.S. Pat. 5,393,893, 1995.
- [11] R. K. Thaper, Y. Kumar, S. M. D. Kumar, S. Misra, J. M. Khanna, Org. Process Res. Dev. 1999, 3, 476.

- [12] W. F. Hoffman, A. W. Alberts, P. S. Anderson, J. S. Chen, R. L. Smith, A. K. Willard, J. Med. Chem. 1986, 29, 849.
- [13] K. S. Murthy, S. E. Horne, G. Weeratunga, S. Young, to Brantford Chemicals Inc., W.O. Pat. 9,812,188,A2, 1998.
- [14] T.-J. Lee, W. F. Hoffman, W. J. Holtz, R. L. Smith, J. Org. Chem. 1992, 57, 1966.
 [15] Z. Regina, J. L. Nigel, B. S. Amos, J. Am. Chem. Soc. 1986, 108, 2451.
- [16] W. Takeshi, H. Hiromu, B. J. Yoshio, J. Org. Chem. 1985, 50, 108.
- [17] H. Nakamura, S. Vasudevan, M. Kim, C. P. Brock, D. S. Watt, J. Org. Chem. 1992, 57, 2223.

Received October 3, 2002